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1 Introduction

The purpose of the present article is to study the asymptotic behavior of the
random sequence of parameters generated by the Stochastic EM algorithm
(SEM algorithm, see, e.g., Celeux and Diebolt (1985)) as the sample size
N -+ oo, in a simple particular case within the mixture context.

The EM algorithm (Dempter, Laird and Rubin, 1977) is a widely appli-
cable approach for computing maximum likehood (ML) estimates for incom-
plete data. Despite appealing features, the EM algorithm has several severe
well-documented drawbacks.

In an attempt to overcome some of these drawbacks, we have defined and
studied a stochastic version of the EM algorithm, that we have called the
SEM algorithm, in Broniatowski, Celeux and Diebolt (1983) and Celeux and
Diebolt (1985, 1986a, 1987). Instead of maximizing the expected complete-
data loglikehood conditional on the observations X(N) = {x 1 ,.. . ,XN}, the
SEM algorithm first simulates the missing data Z(N) from the conditional
density k(Z(N)tX(N),0(m4)), where 0(m) is the current guess of the parame-
ter, and then computes the maximum of the pseudo-completed likelihood
function, thus producing the updated estimator 0(m+1). Note that the SEM
algorithm can be seen as a particular case of the MCEM algorithm of Wei
and Tanner (1990), with q = 1 in their notation, and that these authors
overlooked Celeux and Diebolt's previous papers. (An answer to Wei and
Tanner (1990) can be found in Biscarat, Celeux and Diebolt (1992).)

The random sequence {0(m)} generated by SEM is a homogeneous Markov
chain which turns out to be ergodic in most of the cases of interest (see Section
2 for a proof of ergodicity in the particular mixture case under consideration).
Let 'T N denote its stationary distribution, where the subscript N indicates
dependence upon the observed sample X(N) = {xI,. ..., XN}. The estimator
of 9 provided by SEM is the mean 9"' of the distribution TN It can be
approximated by averaging over a sufficient number of 0(m)'s after 0 (m) has
approximately reached its stationary regime (see Section 2).

Celeux and Diebolt (1985, 1986a) provide experimental evidence which
shows that, for reasonable sample sizes, SEM is often preferable to EM. It
avoids saddle-points as well as nonsignificant local maxima of the likelihood
function and, in some cases, greatly accelerates the convergence. Moreover,
for mixtures, it allows misspecification of the number of components since
an upper bound of the number of components is sufficient to ensure conver-
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gence to the actual number of components if the sample size is large enough.
Finally, in some particular cases, SEM may even provide a good alternative
when the E-step evaluation of the EM algorithm is too intricate. For instance,
when considering censored data it is much easier to simulate the censored
data than to work with the expected complete likelihood conditional upon
X(N) (see Wei and Tanner (1990) and Chauveau (1991)).

On the other hand, Diebolt and Robert (1992) have highlighteJ the links
between SEM and Bayesian sampling. SEM can be viewed as a simplified
version of the Data Augmentation algorithm of Tanner and Wong (1987)
with noninformative priors, where the step of simulation of the posterior
distribution conditional upon the pseudo-completed data, r(OIX(N), Z(m)), is
replaced by the computation of the mean of 7r(OIX(N), z(m)). A similar parallel
can be exhibited for Gibbs sampling. The interest of the SEM alternative in
this perspective is that it allows for working out an estimate of 0 even when
the distributions under consideration are not conjugate. For instance, Chau-
veau (1991) makes use of SEM for this reason when dealing with mixtures
of Weibull distributions.

The numerical simulation results of Celeux and Diebolt show that the
stationary distributions TN of SEM is usually concentrated around a signif-
icant local maximum of the likelihood. In the present paper, we address the
following basic problems :

1. Is 0" ' = Mean('FN) a consistent estimator of 0 ?

2. What is the order of 0"' - On, where ON is the unique consistent
solution of the likelihood equations (e.g., Redner and Walker, 1984) ?

3. Is the conditional distribution of N1/2 (WN - ON) given the observed
-ample X(N) = {X,... ,XN} asymptotically distributed as a normal
distribution with mean 0 and positive variance matrix, where WN is a
random variable drawn from TN ?

Since the theoretical results on the convergence of EM (Wu, 1983 and
Redner and Walker, 1984) are essentially of a local nature and the standard
asymptotic Bayesian theory cannot be used, Problems (1)-(3) appear rather
formidable. Indeed, we did not find how to treat them in the general case
with several local maxima as well as saddle-points. This is the reason why
we focused on a particular case where the likelihood function (1.f.) is concave
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(see Section 2). Of course, in such a case, EM gives good results, and from
a practical point of view, SEM is not useful. However, results obtained in
this particular case have their own theoretical interest and permit us to gain
insight into what is really happening and the mathematics beyond Problems
(1)-(3). Moreover, these results suggest what answers can be expected in
more general situations.

In Section 2, we present the simple mixture model that we will consider
throughout the paper and derive preliminary results about the l.f., EM and
SEM in this particular case.

Section 3 is devoted to our main result, stated as Theorem 1. This the-
orem gives affirmative answers to Problems (1) and (3) for the model un-
der consideration. It also provides a (non-optimal) estimate of the rate of
" - ON (Problem (2)), as well as an estimate of the rate of the conditional

variance of 0 " given X(N). Furthermore, the results in Theorem 1 imply
that 0"' is an asymptotically unbiased and optimal estimator of 0 and the
stationary rescaled SEM sequence Y(m) = N1/ 2 (0 (m) - ON) converges in dis-
tribution, as N -- oo, to the distribution of the stationary autoregressive

sequence {Z( ' )} defined by

Z =m+l) - r*Z(m) + m),(1.1)

where the (m)'s are Gaussian i.i.d. random variables with mean 0 and vari-
ance 1, E(m) is dependent of 4 ), . .., Z( m), and r*, 0 < r* < 1, and a*, a* > 0,
are defined in (2.8) and (2.19) in terms of the complete, conditional and ob-
served Fisher information values, respectively.

Section 4 examines two different sequential versions of SEM. The "one-
step" version has been implicitly studied in Silverman (1980), but has its
asymptotic efficiency can equal to zero. Our Theorem 3 states the a.s. conver-
gence of the "global' version and its asymptotic normality. Since the asymp-
totic variance can be made explicit, we can examine in detail its asymptotic
efficiency, which turns out to be of the same order as the optimal bound.
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2 Preliminary results

2.1 The mixture problem

Throughout this paper, the observed data X(N) = {XI, XN} will be real-
izations of i.i.d. random variables from the mixture density h(x,p*), where

h(x,p) = pf1 (x) + (1 - p)f 2(x), (2.1)

where fl(x) and f2(x) are known densities with respect to a a-finite measure
pi(dx) on some separable measurable space E, and the parameter p satisfies
0 <p < 1. We will assume that p{x : fi(x) # f 2(x)j 5 0 and that fi(x)
and f 2(x) are positive on their respective supports. The statistical problem
under consideration is to find a good estimate of p* on the basis of X(N).

Before proceeding, a formal point has to be made, since the study of the
asymptotic behavior as the sample size N --+ oo of a stochastic algorithm
involves two different probability spaces: The sample space and the sample
of pseudorandom drawings. We will interpret each sample X(N) of size N
as the projection on the N first coordinates of a sequence x = {xi; i > 1}
drawn from the product space X = E{i:i>1 endowed with the probability
distribution

00

P= 1 h(xi,p*)dxi. (2.2)
i=1

The formal description of the pseudorandom drawings is postponed to Sub-
section 2.3.

Next, let us describe the underlying complete data structure of the sta-
tistical problem under consideration. The complete data is (X(N), Z(N)) =

{(xiZi);i = 1,...,N}, where zi = 1 or 0 according as xi has been drawn
from fi(x) or f 2(x), and the zi's are independent. Thus, each zi is a Bernoulli
r.v. with parameter t* = t(xi, p*), where

t(X'p) = pfW(x)
pfh(x) + (1 - p)f2(x) (2.3)

2.2 The EM algorithm

The mth iteration p(m+l) = TN(p(m)) of EM consists in the E-step: Compute
t(m) = t(x,,p(m)) for i = 1,..., N, followed by the M-step: Compute p(m+l) =
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TN(p(m)), where

Nj t(xi,p) for pE (0,1). (2.4)NNp i=1

Thus, letting TN(0) = 0 and TN(1) = 1, the EM algorithm indeed consists
in iterating the function TN : [0, 1] --+ [0, 1], starting from an initial position
p(O) E (0, 1). We have the following preliminary results, where

N

LN(p) = ylog h(xi,p) (2.5)

denotes the loglikelihood function and the observed, complete and conditional
Fisher information values Jobs, J, and Jond, respectively, are defined as in
Titterington, Smith and Makov (1985).

Lemma 2.1 (i) The function TN(p) is increasing over [0, 1].

(ii) We have, for all p in [0, 1],

L'N(p)
TN(p)-p= p(1- P) N (2.6)

(iii) For Px-almost every x E X, there exists an integer No = No(x) such
that L(p) < 0 for all p in (0, 1) whenever N > No, i.e. the loglikeli-
hood is a concave function for N > No.

(iv) If PN is the unique maximizer of LN(p) when N > N0, PN is the unique
stable fixed point of TN(p) over [0, 1], with

rN = TN(pN) = 1 + pN(1- pN) L%(P N ) E (0,1), (2.7)N

and TN(p) > p for 0 < p < PN and TN(p) < p for PN < P < 1.

(v) Each sequence {p(m)} generated by EM starting from p(O) E (0, 1) con-
verges to PN with a geometric rate.

(vi) The derivative rNr of TN at PN converges Px-a.s. to
Jobs __Jcondt

r"- E(0, 1) (2.8)
gc Jc

as N-- oc.
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A brief proof of Lemma 2.1 can be found in the Appendix.

Remark 2.1 - Lemma 2.1 shows that, in the simple incomplete data statis-
tical problem under consideration, EM does very well if N > No. Thus, from
a practical point of view, there is no need for any improved algorithm in this
particular case. However, we have explained in Section 1 why the asymptotic
behavior of SEM as N --+ o in this context deserves a careful study.

2.3 The SEM algorithm

In the present context, the Stochastic Imputation Principle (e.g., Celeux
and Diebolt, 1987) produces the updated estimate p(m+i) as the ML esti-
mate based on the pseudo-completed sample (X(N), Z(m)) = {(xi, z!M));i =

1,... ,N}, where Z(m) E Z(N) = {0 , 1}N, each zm) is a Bernoulli r.v. with
parameter tm) = t(xi,p(m)) given by (2.3) and the z!)'s, i = 1,...,N, are
drawn independently. This yields, in view of (2.4),

p(,+I) 1 N )
p (2.9)

so that the random sequence {p(m)} is a homogeneous Markov chain taking its
values in {0, 1 N-1 1}. In order to remove the absorbing states 0 and 1,N',...,-- N-,
we first make choice of a sequence of thresholds c(N), -L c(N) < 1 -c(N)
N-, such that c(N) -- 0 as N --* oo, and of a probability distribution FN

on the set { :j= 0,1,.-.,N and c(N) < I - c(N)}. The SEM

algorithm then proceeds as follows. E-step: Compute t(xi,p(m)) = t(m) for
i = 1, N using (2.3). S-step: For i = 1,..., N, draw independently the

Bernoulli r.v.'s z!m) with parameter t!' ) and compute

p1  m) (2.10)

If p(m+!) E JN = [c(N), 1 - c(N)], then go to M-step. Otherwise, draw

p(m+l) from the preassigned distribution EN and go to E-step. M-step:

p(m+I) = p(m+1). (2.11)
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This procedure avoids p(m) being stuck at p = 0 or p = 1, whereas the
sequence defined in this way is still a homogeneous Markov chain. Next, we
turn to the ergodicity of this Markov chain.

Lemma 2.2 The homogeneous Markov chain {p(m)} generated by SEM is
geometrically ergodic and the support of its stationary distribution "4N is
contained in JN.

The proof of Lemma 2.2 can be found in the Appendix.

Remark 2.2 - As a consequence, since {p()I)} is a finite-state ergodic Markov
chain, it is uniformly strongly mixing with a geometric rate. Hence, the SLLN
and a suitable version of the CLT (e.g., Davydov, 1973) apply.

We conclude this section by showing that the sequence generated by SEM
can be viewed as a random perturbation of the discrete-time dynamical sys-
tem on [0, 1] generated by EM. First, we need to have a workable represen-
tation of the r.v.'s zm)_ They can be written as

!in) = W[oIt(X,,P(, ), i = 1,.. ,N, (2.12)

where l[a,b(s) is the indicator function of the interval [a, b] and the wi's,
i = 1,... , N, are i.i.d. random variables uniformly distribued on [0, 1] such
that the sample w(m) = (W(m),.. . ,W(N) is independent of p(o),. .. ,p(M}. We
have

p(m+!) = TN(p(in)) + UN(p(i)), (2.13)

where for each p, 0 < p < 1,

UN(p) = N-'/2 SN(p)77N(P,W), (2.14)

where SN(p) > 0, SN(p) = p(1 - p)Tv(p) converges Px-a.s. as N -* oo to

S2(p)= p(O -p) f()f2(x) (x p(dx), (2.15)

h(x, p)

and the r.v. w --- 27N(p,w) defined by

N

77N(p,w) = N-/ 2SN/(p) Z{1o't(X,p)](wi) - t(xi,p)}, (2.16)
i=1
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has mean 0 and variance 1 for each p in (0, 1). With the above representation

of the z!m)'s, the probabilistic setup of the successive random drawings in-
volved in the S-step of SEM can be made precise: each w(m) can be viewed as
a whole sequence of fn = [0, 1]{ i:i> 11 endowed with the product a-field and the
probability Pn(dw) = I,>lA(dwi), where A denotes the Lebesgue measure on

[0, 11, whereas 7N(p,W(m)) only involves the first N coordinates W .m)... , (M )

of the sequence w(' ). We will denote by EO(Y) the expectation of any r.v.
Y(w) with respect to this probability Pa. For instance, En(?7N(p,w)) = 0
and Eal{7'(p,w)} = 1 for all p in (0, 1).

Since the CLT implies that, for all p in (0, 1) and Px-a.e. X, 71N(p, W)

converges in Pa-distribution as N - oo to a Gaussian r.v. c(w) with mean
0 and variance 1, we can expect that, for large N, (2.10)-(2.14) can be ap-
proximated by

p(m+ ) .: TN(p(m)) + N-/SN(p(m))((m), (2.17)

with c(m) = E(w(m)), so that, if we can show that the stationary measure

%PN of {p(m)} is well concentrated around PN, then (2.17) turns out to be
approximately

p(m+ ) t PN + rN(p(m ) - PN) + N-u/ 2 SN(p(m))C(m) "  (2.18)

Furthermore, since rN --+ r* and

aN = SN(PN) 4a 2 = S 2 (p *) = p5 (1 - p)r* = J,,d/J2 (2.19)

as N --*oo,

p(m+!) - PN 9" r*(p(m) - PN) + N -1 / 2 a ' (m), (2.20)

so that, in general, pvn+) = p(m+ ) if p(m) remains near PN most of the time.
If we can make the approximations (2.17)-(2.20) precise and uniform with
respect to p(m) in a suitable sense and show that p(m) remains near PN, then
we will have essentially proved Theorem 1, which we will now state and prove.
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3 Main Results

3.1 Theorem 1

Before stating our Theorem 1, we need to introduce

R(N) = R(x,N) = sup TAY)- PN (3.1)
PEJNPApN P

It follows from the results in Subsection 2.2 and the Appendix that 0 <
R(N) < 1 PX - a.s. for N large enough, and 1 - R(N) -- 0 as c(N) --- 0.
Furthermore, the rate of convergence to 0 of 1 - R(N) can be arbitrarily slow
provided that the rate of c(N) as been chosen slow enough.

Theorem 1 Suppose that the followino assumptions (H1)-(H4) hold.
(Hi) The densities fi(x) and f 2(x) satisfy p{x: fi(x) $ f 2(x)} # 0.
(H2) The probability distribution FN (see Subsection 2.3) used to draw the
updated SEM estimator p(m+l) when p(m+(1/ 2 )) is not in JN is the Dirac mea-
sure at some j(N)/N E (c(N), 1 - c(N)), 1 < j(N) < N - 1.
(H3) Nc(N) --+ oo as N --+ oo.
(H4) N{1 - R(N)}' -4cc as N -- oo.
Then

(i) If WN is a r.v. from the stationary distribution "N of SEM, then
N'/ 2(WN -PN) converges in distribution as N --+ oo to a Gaussian r.v.
with mean 0 and variance v* = a*2/(1 - r*2), where r" = Jcd,/Jc E
(0,1) and U*2 = p*(1 - p*)r* = Jcod/Jc.

(ii) For all N large enough,

ipsr - PNI < N-1 /2a(N) + O (N2 ( )), (3.2)

where p m = Mean(%PN) and

a(N) = O(o,(N) + 6(N)), (3.3)

a(N) = 0 (N_1/2{1 - R(N)}_2)+0 ({Nc(N)_1/,I6og/4 {Nc(N)

(3.4)
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and
6(N) = 0 (lrN - r"I + JaN - 01) (3.5)

Furthermore, if a(N){1 -R(N)} - --+ 0 as N c, then

IVar(I. N') - V* = o(1). (3.6)

(iii) If PN(t), -oo < t < cc, denotes the d.f. of YN and 4FN denotes the
normal d.f. with mean PN and variance vN/N U2 /{N(1 - r, )},
then, for all 7o such that 0 < p* - Tr0 < p* + ro _ 1,

sup IPN(t) - N(t),= ( 2 N)) (3.7)
t~t '-'o,p'+To]

sup IPN(t)- 4N(t)I - 0 (a2/3(V)) (3.8)
tE[P'-To,p'+ro]

Remark 3.1 The assumption (H2) can be greatly relaxed to allow for more
general FN distributions. It suffices to make proper choices of SN(p) and

N(P, w) for p JN, but for these more general rN 'S the proof of Theorem 1
is more involved. Here, we have stated Theorem 1 under (H2) for clarity.

Remark 3.2 The assertion (i) tells us that the stationary distribution 'IN of
SEM in the particular mixture context detailed in Section 2 is asymptotically
normal with mean pN and variance v*/N, where v* = JjIS{1+(J/J,d)}- <

1/(2J,,). Thus, the variance of a sample {p(m) :m = 1,... ,M} of the
stationary SEM sequence is only a fraction 9f the variance 1/Jobs of the ML
estimator PN. This is natural since, as explained in Section 1, SEM can be
roughly viewed as a particular version of the Gibbs sampler, where the step
of simulation of 0m+1 , r(OIx(N), Z(m)) is replaced by the updating 0(m+1) =
Mean of T(OIx(N), Z(m)), which reduces the variance of the generated sequence.

Remark 3.3 The assertion (ii) entails that the SEM estimator p,5m = Mean

(I'N) is asymptotically unbiased and its sample variance is equal to the sample
variance of the AIL estimator PN up to a term of the order of a(N)/N =

o(1/N). Thus, p- is asymptotically optimal.

11



Remark 3.4 From Lemma A.4 in the Appendix, it -esults that 6(N) =
o(g(N)/vWN) Px-a.s., where t(N) = V9 2(N) and t2 denotes the iterated
logarithm.

Remark 3.5 Theorem 1 (i) can be directly generalized to the case where the
mixture h(x, p) = E"< k<Kpkfk(x) has K > 3 components and the parameter
to be estimated is p = (Pi,',PK-1). In contrast, the assertior(ii) and (iii)

do not seem to be easily extendable via our method of proof.

Remark 3.6 Theorem 1 suggests that similar results hold in the context of
general mixture problems, and even in the general missing or incomplete data
context under reasonable assumptions. The only general result in this per-
spective is a theorem in Celeux and Diebolt (1986b) which states essentially
that the assertion (i) holds under the restrictive assumption that the EM op-
erator TN(O) has only one fixed point in the compact GN corresponding to
the interval JN, and that this unique fixed point is stable. This theorem sup-
ports the conjecture that (i) holds in a rather general context, since, although
TN(O) has many fixed points whenever GN is reasonably large, the unique
consistent estimator ON becomes prominent, whereas the other fixed points of
TN(O) fluctuate and fade away as N -- o. In a very loose sense, this means
that TN(O) has asymptotically a unique fixed point in GN, which turns out to
be stable since it is a maximum of the l.f.

Remark 3.7 Note that an alternative to the SEM algorithm is the SAEM
algorithm (Celeux and Diebolt, 1992), which is somewhat in the spirit of sim-
ulated annealing. Celeux and Diebolt (1992) show that, for any given sample
x(N) with N large enough, SAEM converges a.s. to a local maximum of the l.f.
in the context of general mixtures of densities from some exponential family,
under reasonable assumptions concerning the fixed points of TN(O) in GN.
Furthermore, Biscarat (1992) establishes a more general result, which allows
to take care of other important incomplete data settings. See also Biscarat,
Celeux and Diebolt (1992) for a similar theoretical study of a simulated an-
nealing type version of the MCEM algorithm introduced in Wei and Tanner
(1990).
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3.2 Proof of Theorem 1

We begin with a brief outline of the proof of Theorem 1. In Part I, we
establish results analogous to (i)-(iii) for the auxiliary sequence

V(m) = %IN (q(m) - PN), (3.9)

where the homogeneous Markov chain {q(m)} is recursively defined by

SN (q(m))
q<m+1) - TN (q(m)) + V'N N (q) (3.10)

TN(P)TN(P)j(N)

where tN(p) = TN(p) for p E JN and tN(p) = some -A- in JN for p V Jr.,

SN(p) = SN(p) for P E JN and SN(p) = 0 for p V JN, and N(P,wU;) = 77N(P,W)

for p E JN, N(P,w) = rN(c(N),w) for 0 < p < c(N) and N(P,w) =

77N(1 - c(N),w) for 1 - c(N) 5 p < 1. We first show that {q(m)} is ergodic

(Step 1) with stationary distribution denoted by AN. Then, we derive an

upper bound for En (V(m)1 4), introducing

0< R(N) sup TNI- N <1, (3.11)
PEJN,P PNIP -PN

in Step 2. In Step 3, we deduce from technical results about TN(p) and SN(P)
(Lemmas 3.3 and 3.4) and from the Skorohod representation together with
bounds related to the Berry-Esseen Inequality (see Lemma 3.5) an upper

bound for E (IV(m) - Z(m)12), where Z() = V0 ) and

Z(m+l) - rNZ(m) + ON (m ) , (3.12)

with e(m) a Gaussian r.v. with mean 0 and variance 1, independent from
Z(), ... , Z(m). In Step 4, we deduce from Lemma 3.5 results for V(m) anal-

ogous to (i)-(iii) and an upper bound for AN(Jk), where Jk denotes the
complement of JN in 10, 1].

In Part II, we show how to obtain from these results corresponding upper

bounds for En (IY(m) - Z(M)j12 ), where

Y(m) = -/7j (p(m) - PN). (3.13)
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PART I

Step 1 First, we have to make sure that {q(m)} is ergodic. This is the
purpose of Lemma 3.1 below.

Lemma 3.1 The homogeneous Markov chain {q(m)} defined by (3.10) is
ergodic. Moreover, its stationary distribution AN has all its moments finite
if Nc(N) --+ oo as N -+ 0o.

The proof of Lemma 3.1 parallels that of Lemma 2.2 above, and can be
found in the Appendix.

Step 2 We need the following upper bound for En (IV(m)1 4) involving R(N)

defined by (3.11).

Lemma 3.2 Assume that Nc(N) -+ 00 as N --+ co, and either V (° ) = 0
or { V(m) } is in its stationary regime. Then, for PX - a.e. x, there exists a
finite integer NI(x) such that N > NI(x) implies

-V() - IR for all m > 0, (3.14)

where IIVllp = (En(IV)P) 1/P for p > 1.

Proof From (3.9)-(3.10) and the Minkowski Inequality, it follows that

Ilv(m+l) :, R(N) Iv(m)H + I IVN (q(m),w(m)) , (

since 0 < SN(p) < 1/4 for all p in (0, 1). Now, the same calculation as in the
proof of Lemma 3.1 (Appendix) shows that, for all p in [0, 1],

ED(IjN(p,w)1
4) 1 1 4N.k(p)

(3.16)
1

< 1+
-+2Nc(N)r N

where r' = inf IT(p)l --+ r' > 0 for almost every x as N * co (Appendix).
N [0,1]

Since Nc(N) -+ co as N --- co, the result follows. ]
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Step 3 Before establishing Lemma 3.5, which is the core of the proof, we
need two additional technical results, namely Lemmas 3.3 and 3.4 below,
whose proofs are postponed to the Appendix for clarity.

Lemma 3.3 (i) For Px - a.e. x, there exists a finite integer N2(x) > NI(x)
such that N > N2(x) implies

1
I T ' (p) <1 - for all p in (0, 1). (3.17)

- A-p

(ii) Let 0 < co < p" be given. Then, for Px - a.e. x, there exists a finite
integer N3(x) > N2(x) such that N > N3 (x) implies that IPN - pri < Eo and
[p* - 60, pS + e0] is contained in JN and, for all h such that PN + h E [0, 1],

we have
ITN(PN + h)- PN - hrNI < Aohl2  (3.18)

for some positive constant Ao.

Lemma 3.4 Under the same assumptions as in Lemma 3.3, there exists a
positive constant Bo and, for PX - a.e. x, a finite integer N4(x) > Na(x)
such that N > N4(x) implies

ISN(PN + h)- SN(PN)I 1 B01hl (3.19)

for all h such that PN + h E [0, 1].

The next lemma is the core of the proof of Theorem 1. Using Skorohod's
(1956) representation argument and the Berry-Esseen Inequality, it provides
a basic upper bound for E(I N(p, u) - C(u)1 2) uniformly in p E [0, 1], where
N(P, u) and -(u) denote the Skorohod representations of 4N(P,w) and C(w),

respectively, as defined below.

Lemma 3.5 Assume that Nc(N) --- oo as N --+ o. Then, there exists
a probability space (U = {u = (ul,u 2,'".,));Pu) and r.v.'s N(p,u) and
e(ui), i = 1,2,..., defined on this probability space, such that :
(i) .(p, u,) and e(ui) have the same distributions as N(p,w) and e(w),
respectively, for each i = 1,2,-.. and all p in [0, 1].
(ii) For each fixed N and p, the r.v. 's N(p,u), i = 1,2,..., are i.i.d. and the
r.v.'s c(uj), i = 1,2,..., are i.i.d. and Gaussian with mean 0 and variance

15



1.

(iii) For PX - a.e. x, there exists a finite integer Ns(x) > N4(x) such that
N > Ns(x) implies, for all i = 1, 2,..., and p in [0, 11,

Eu(1N(p, ui) - e(ui) 1) < 1014'(N)logl/ 2 ( + 27' /2(N), (3.20)

where-y(N) = O((Nc(N))-I1).

Proof. We begin with some notation. For any distribution function (d.f.)

F(t), -o < t < oo, let F-l(u) = inf{t : F(t) > u}, u E (0,1), denote

the corresponding inverse function. Let FN(p, t) denote the d.f. of tN(p, W)

and 4(t) denote the standard normal d.f. The function N(p, u) = inf{t :

FN(p,t) > u} and e(u) = 4 -(u), u E (0, 1) are r.v.'s on the probability
space ([0, 1], B[O, 1], A(du)), where B[0, 1] is the Borel a- field of [0, 1] and
A(du) is the Lebesgue probability measure on [0, 11, with the same distribu-
tions as N(p,w) and e(w), respectively. For any fixed p, the CLT implies
that N(P,U) - e(u) A(du) - a.s. as N -+ 00.

On the other hand, the Berry-Esseen Inequality (e.g., Shorack and Well-
ner (1986, p. 848)) implies that, for all p in [0, 1),

sup IFN(p,t)- 0(t)I < EE[NS.(p)]-1/2

-oo<t<oo 2 (3.21)
<5 -y(N),

where -y(N) = CBE[r'Nc(N)]1 /2 , with r' as in the Appendix, if N is large
enough. Here, CBE denotes the absolute positive constant involved in the
Berry-Esseen Inequality.

Now let B(N,p), p E [0,1], be the subset of [0,1] defined by B(N,p) =

{u E (0,1): kN(p,u) - C(u)I > Vr}(N). Owing to Shorack and Wellner

(1986), Ex. 7 p. 65, we deduce from (3.21) that A{B(N,p)} < y(N),
uniformly in p.

We are now in a position to derive (3.20). First note that, since E\(E2) =

EA{&(p, .)21 = 1, we have

E\(I&N(P,.)- 2 ) _< 2E{le I - N(P,.)I1. (3.22)
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But, by the Cauchy-Schwarz Inequality, and the definition of e(u),

IB(N,p) 6(U) I 16(U) - WAu) Idu < 2 (IB(N,p) {ip-1(Zu) 2du) /2 (3.23)

whereas

JB(N,p)c E(u)j 16(U) - N(p u)Idu < (3.24)

In order to obtain a workable upper bound for tile RIIS of (3.23), we
note that, since -V1 (u) is increasing on (0, 1) and symmetric about 1/2, the

integral IB(N~p ){4 1 (u)}2 du is lesser than the integral j{4.)11(U)2 du,

where C(N,p) has the same Lebesgue measure as B(N,p) and is the union
of (0,aJ and [1 - a, 1) for some a, 0 < a < 1/2. Since A{B(N,p)} < VIy-(N),
it follows that

< 2 {r (u}du
2 (3.25)

2 2jt2(NP ot)dt,

where b(N) ='v I - ))and V(t) = (2r)-1 / 2 exp (P-) An inte-

gration by parts shows that the RUS of (3.25) is equal to

2{1(2r )-1/2 b(N) exp (1 b2(N)) + (1 - D(N)

Thus, for b(N) > 1,

IB(N,p) {()}du < 2b (N) (b(N)) + Y(N)

< 2b 2 (N) 1+ b2() (1 - t1)(b(N)) + V7-(N)

< 4b2(N)(1 - '1)(b(N)) +~ N-y(N)

< (2b 2 (N) + 1)V/y(N).
(3.26)
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_ , 2V ( b( N ) )

Finally, for b(N) > 1, (N) = 2(1 -t)(b(N)) < b(N) , implying
that

log ( > b2(N) + 2log(b(N)) + log > b(N), (3.27)

from which it follows that
' 1 2{ (1 )\

I D(NP )}'du < 2log + I + 1 -y(N). (3.28)

Putting (3.21)-(3.28) together, we obtain for all N large enough that

E.\(I N(p,.)- 12) < 10_Y1/ 4 (N) logl/ 2  1 ) + 27'/2(N). (3.29)

0

Thus, to conclude the proof of Lemma 3.5, it suffices to take

U = 0,111 , Pu(du) = HIA(dui),
i=1

&,N(p,ui) = inf{t: FN(p,t) > ui} and c(uj) = 4I-'(uj).

Step 4 We now compare the Skorohod version V(m)(u) = v/'N(q(m)(u)-PN)
of (3.9) to the autoregressive linear Gaussian process

Z(m+')(u) = rNZ(-)(U) + aN(')(U), (3.30)

where aN = SN(PN) and (-)(u) = ((u,) and to

Z.m+l) (u) = r*Z!m)(u) + aU(m)(U), (3.31)

where r* and a* have been defined in (2.8) and (2.19), respectively. In order
to achieve these comparisons, we suppose that V(m)(u) is in its stationary
regime, that Nc(N) --+ oo as N -. + co and that N > N5 (x) as defined in
Lemma 3.5. For simplicity, we will suppress the argument u in the notation
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and write (N) = Nq ( ' ) , u,,).
From Lemmas 3.3 and 3.4 it follows that

Ao B
IV(m+') - (rNV(m) + ( < -0V(m)I2 + NIVmII yN)I (3.32)

which implies

]1 V (m + ) - Z(m+l) 112 - rN 1l V(m) - Z(m) 112 +a(N), (3.33)

where

a(N) = A _ + 2Bo + O(N), (3.34)
N I1 - R(N)} 2 + V/N{ I - R(N)}

with

ON = O{1/8(N)log'/ 4 (N) (3.35)

If we select Z (0 ) = V(0)7 it follows from (3.33) that

i0 ) - Z(m) 112 < 1(N) (3.36)

with

Z(m) - (rN)(m)V( ° ) + CN -(rN)m-Jc(J). (3.37)
j=1

If, moreover, we select Z(° )  Z (° ) - 0 ( ) , we obtain from (3.30)-(3.31) and
(3.33)

11 V(m) - Z.m) 112 , a(N) + b(m, N) (3.38)
- -rN

where

,(m,N) = IrN - r* I  -( + 1 ) + [aN - * (3.39)

Finally, if we select for each N large enough an integer m(N) such that

(r_)m(N)
p(N) - I -R(N) Oas N --- c (3.40)
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and denote 5(N) = b(m(N), N) then we obtain a r.v. 17N = V(m(N)) with
distribution AN and a Gaussian r.v. ZN,

m(N)

ZN = a (r)m(N)-jc(j ), (3.41)
j=1

with mean 0 and variance v*{1 - (r*)2m(N)}, such that

1I VN - ZNI12 '.5 _(N) + b(N) + p(N). (3.42)
1 -rN

Since m(N) can be taken arbitrarily large, we can assume that

j1 VN - ZN 1I - a(N), (3.43)

where

a(N) = 2 a(N) + (N) + p(N). (3.44)1- rN

and

b(N) < 2a*IrN - r*1 + JaN - al- (3.45)
1 l- r* INe.(.5

Step 5 Before proceeding to Part II, we deduce from the results obtained
above several properties of the asymptotic behavior of AN from which the
assertions (i)-(iii) of Theorem 1 will be derived in Part II.

1. In view of (3.42)-(3.45) and the convergence in distribution of ZN to
a Gaussian r.v. with mean 0 and variance v*, it results from Lemma
2, p. 254, Feller (1971) that VN converges in distribution to the same
limit.

2. Since {V(' )} is assumed stationary,

Mean (AN) = Eu(q(m))

= EU (PN + N-1/2V(m)) (3.46)

= PN + N- 1 1 2 EU(IN)
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by taking m = m(N). Thus

IMean (AN) - PNI <  N- 1 {IEu(ZN)I+ II N - ZN 111i

< N-11 2 i VN- ZN 112 (3.47)

< N- /2a(N),

since ZN has mean 0 and by making use of the Cauchy-Schwarz In-
equality. It can be proved similarly that

lVar (AN) - =o(-) (3.48)

provided that the rate of convergence of c(N) to 0 is such that a(N)/{ 1-
R(N)} converges to 0.
Similar bounds can be derived for higher moments.

3. Let QN(t) = PU{q(m) < t} be the distribution function of q(m) in its
stationary regime and 4m,N(t) = PU {PN + Z <

From (3.36) and Chebyschev Inequality it results that, for all real t and
positive h,

IQN(t) - ',,N(t + h)l < 1 [(N)] 2  (349)

Letting m -- oo, we obtain that, for all real t,

JQN ~1 -Da Irc(N) 12 h N) 50

IQN(t)-'IN(t)I--< L---h2 [-N] + r ( S _ (
I\ -- "N hJ

where 4 N(t) is the normal distribution function with mean PN and
variance aN/{N(1 - rN)} and ON(t) is the corresponding density. A
proper selection of h = hN in (3.50) yields for the sup-norm 1 QN-
'0 N Iloo:

llQN - N 11.0 - 3 (N) I(1) 2 + ON
rN +(3.51)

= 0(cr2/ 3(N)) as N -+ oo.
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4. Finally, we will use in Part II of the proof of Theorem 1 an upper bound
for AN(Jt), where JN = [c(N), 1 - c(N)] and J is the complement
of JN in [0, 1]. Since the measure AN is concentrated on [0, 1], the
distribution function of AN satisfies QN(O) = 0 and QN(1) = 1, and we
have AN(Jk) = QN(c(N)) + (1 - QN)(1- c(N)). Now, using inequality
(3.50) with a proper choice of h = hN yields

AN(J J) =0 (aN)) as N -+ o. (3.52)

PART 11

In order to derive (i)-(iii) of Theorem 1 from points (1)-(3) of Step 5 of
Part I, we will first show that AN(B) 5 'IN(B) for all Borel subsets B of
JN. To this end, we consider the Skorohod representation of q(m) and p(-),
assuming that q(O) = p(O) E JN. Let kt(f > 1) denote the I th exit time of
p('112) from JN. For 0 < m < k1 ,q() = p(m) and qik +1) - p JN.

Since N(q) = j(N)/N E JN and SN(q) 0 for q V JN, q(ki+ 2 ) = j(N)/N.
Also, since p(k1 +') is drawn from FN and FN is assumed to be the Dirac
measure at j(N)/N, p(kl+i) = q(kl+ 2 ) = j(N)/N. An induction shows that,
for t > 0,

q(-) = p(-t) if kt + I < m < k,+, + f - 1, (3.53)

with the convention ko = 0. Hence, if IB(q(m)) = 1, where IB(.) is the
indicator function of B C JN, then there exists m' < m such that IB(p(m')) =

1, implying that

M 1 M
L IB(q(')) <  1: IB(p()) (3.54)

M + 1 m= M1(

for all M. But, by ergodicity, letting M -* oo in (3.54) yields

AN(B) < *N(B) for aliB C JN. (3.55)

Next, since *N is concentrated on JN, it follows from (3.55) and AN(O, 1]) =

4#N([0, 1]) = 1 that the total variation I '1PN - AN JITv satifies

11 *N - AN IITV 2AN(J ) (3.56)
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which implies (i) and (iii), in view of points (1) and (3) in Part I. Finally,
since p(m) and q(m) are in [0, 1], (3.56) implies that

I Mean(TN) - Mean(AN) f < fJ t I 'IN - AN I (dr)0(,_2NN,) '  (3.57)

and, similarly,

I Var(L'N) - Var(AN)J= O(a ) (3.58)

thus (ii) is obtained from point (2), which completes the proof of Theorem
1.0

4 Sequential Versions of SEM

In this section, we turn our attention to two different sequential versions of
SEM. Sequential procedures are used when the observations xl,.. , x,,... are
received one at a time and the estimation of the mixture parameters have to
be updated before the next observation is received. The Chapter 6 in Titter-
ington, Smith and Makov (1985) provides a thorough examination of sequan-
tial methods in the mixture setting. Great attention is paid to the particular
problem of estimating the mixing proportion p* for two-component mixtures
where the component densities are assumed known. This is the problem that
we address in this section. Titterington, Smith and Makov review the main
approaches to this problem, namely, the decision-directed method (Davisson
and Schwartz, 1970), the Quasi-Bayes method (Makov and Smith, 1977), the
probabilistic editor method (e.g., Owen, 1975), the method of moments (e.g.,
Odell and Basu, 1976), a Newton-Raphson-type gradient algorithm for find-
ing the minimum of the Kullback-Leibler divergence (Kazakos, 1977) and
the probabilistic teacher method (Agrawala, 1970, Silverman, 1980). This
last approach is nothing but a one-step sequential version of SEM and is the
object of Subsection 4.1 below. Moreover, Titterington (1984) introduces
a general recursive method which, in the particular mixture problem under
consideration, can be written as

p(m+1) = p(m) + (m + 1)- 1 J1 '(p(m))S(xm+,p(m ' )) (4.1)

where Jc(p) = [p(l - p)]-l is the complete data Fisher information for a
single observation from h(x,p) = pfi(x)+ (I -p)f2(x) and S(x,p) = [fi(x)-
f 2(x)]/h(x,p) is the score (O/ap) log h(x,p).
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As noted in Titterington et al. (1985), p. 184: "A convenient way to
approach the study of the asymptotic properties of the various proposed
procedures is through the theory of stochastic approximation which exploits
the martingale strucure implicit in the recursions involved in these methods"
(see (4.1), for instance). Thus, the consistency of the estimators derived from
the Quasi-Bayes method, the Kazakos algorithm, the probabilistic teacher
method and the Titterington algorithm have been proved using results from
martingale theory.

A good measure of the efficiency of a sequence of estimators {p(m) } is its
asymptotic relative efficiency defined as

ARE= lim mV(4.2)

where V* = J-b! is the Cramer-Rao lower bound. Kazakos (1977) has de-
signed his algorithm to be fully efficient, i.e. to have ARE = 1. But his
scheme requires numerical integration which are computationnally unattrac-
tive. Now, it is a striking fact that the ARE's of the Quasi-Bayes, the prob-
abilistic teacher and the Titterington algorithms are positive iff the ratio

Job,/J > 1/2.

4.1 The one-step sequential SEM algorithm

This is the standard sequential version of SEM. Each time a new observation
X,,+I is received, only the classification zm+, is drawn at random from the
current posterior probability t(xm+,p(')). There is no feedback as to the
correctness of previous'decisions: The other zW')'s, 1 < J < m, are kept con-
stant. More formally the one-step sequential SEM works as follows. Denote
by p()(m > 1) the estimate of p" computed on the basis of the observa-
tions xl,... ,x,, and by p(O) the starting point of the algorithm. After x,,,+,

has been received, the E-step consists of computing the posterior probability
tm+i = t(zm+,,p(m)), according to (2.3). The S step draws the r.v. z,+
from a Bernoulli distribution with parameter t,,,+l. The M-step updates p(m)
as

p(,f+l) = p(,) + ZM+l - ptm) (4.3)
m+l

As noted above, the recursion (4.3) can be viewed as the probabilistic teacher
algorithm of Agrawala (1970). Thus, the results obtained by Silverman
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(1980) can be transferred. These results are :ummarized in the Theorem
2 below.

Theorem 2 (Silverman 1980) (i) p(m) - p* a.s. as rn -- oc.
(ii) The ARE of the one-step sequential SEA1 algorithm is equal to

ARE = max(0, 2 - Jo(.

4.2 The global sequential SEM algorithm

In this subsection, we inherit the notation of Sections 2 and 3. The main
object of this subsection is to explain and prove Theorem 3. This theorem
concerns convergence properties of the particular sequential vers.on of SEM
that we call the global sequential SEM algorithm. This version wcrfks as fol-
lows. Denote by p(')(m > 1) the estimate of p* computed on the basis of the
observations x 1,. . . , x,,, and by p(O) the starting point of the algorithm. After
the (m + 1)th observation, xm+1, has been recorded, the E-step updates the
posterior probabilities as t m+ - t (Xi P(m)), 1 m, and computes the

new posterior probability ,+1 - t(Xm+ip(m)), according to (2.3). The S-

step draws independently each r.v. z1, i = .,m + 1, from a Bernoulli
distribution with parameter t m+l). The M-step updates pm as

p(m+l) = Tn+x1 (p(,)) + (m + 1)-l m+i(p(,,))(,m+I), (4.5)

where (,+) = , (p(m), ( )).
The important difference with the one-step sequential SEM algorithm is

that all the observations are again randomly attributed to olie of the compo-
nents of the mixture after each new observation has been recorded. Accord-
ingly, there are more and more computations involved in the m th iteration
as m increases. On the other hand, one can expect that the convergence to
p* will be much quicker. This is suggested by the assertion (iv) of Theorem
3 below, which states that the ARE of the global sequential version of SEM
is positive (at least under the assumption that c(N) and R(N) be constant).
Gn the contrary, the ARE of the one-step sequential version of SEM is zero
whenever Jc/J ob, >_ 2 (see (4.4)).

Note that, since Theorem 3 (iii) establishes the a.s. convergence of p(m) to
p" E (0, 1) as m --+ oo, there is a.-. at most a finite number of p(m)'s outride
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the intervals Jm. This means that the choice of the procedure when p(m)

exits from Jm is not important. This is the reason why we have made choice
of the procedure implicitly contained in (4.5): It is the most convenient for
proving Theorem 3, following our approach.

Theorem 3 (i) asserts that, under assumptions which parallel (H1)-(H4)
above, the PO - distribution of p(,) = p(,)(X,w) is Px - a.s. asymptotically
normal with mean p,,, and variance v*m - 1, where pm = pmo(x) is the ML
estimateof p* based on the sample {xj,...,x,} and v* = (a')2{1 - (r*)2} - I ,

with r" and oa" defined in (2.8) and (2.19), respectively.
Theorem 3 (ii) provides Px- a.s. asymptotic upper bounds for fEn(pM) -

P. 1 and IVarn(p(' )) - v*m - I. These bounds make (i) more precise.
Before stating Theorem 3, we need to state the assumptions (H5) and

(H6), which are as follows.
(H5) For Px- a.e.x, Em>am- 2 {1 - R(m)} -4 < 0o and Em>m 1 /3 2([Om]) <

oo for any 0, 0 < 0 < 1, where [t] denotes the largest integer < t.
(H6) There exists an exponent u, 0 < y < 1, such that m - u = O(c(m)). (For
It = 0, this means that c(m) is constant. Note that (H6) implies (112).)
Finally, recall that £(m) = {2t 2(m)}'/ 2 , where t 2(m) denotes the iterated
logarithm. We can now state Theorem 3.

Theorem 3 (i) Suppose that the assumptions (HI), (H3)-(H4) and (H6)
hold. Then, m 1/ 2 (p(m) _ pm) converges Px - a.s. in PO - distribution
to a Gaussian r.v. with mean 0 and variance v*.

(ii) Under the assumptions (Hi), (H3)-(H4) and (H6), for Px - a.e. x and
all m large enough,

IEn(p(M)) - PmI < m-1/ 2 a,,q(m) = o(m -1 /2 ) (m __+ 00) (4.6)

and
I /2(p())m (vl 2m-/2aaeq(m)+ O(m-e(m)), (4.7)

where, for all 0,0 < 0 < 1,

a, q(m) = O(#3([Om])) + O(m-1/2{1 - R(m)} -2 ) (m -- o). (4.8)

(iii) Under the assumptions (HI), (M3) and (H5)-(H6),

lim (p(M)- pm) =0 Px 0 PO - a.s. (4.9)
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Futhermore, under (Hi), (3) and (H6) with 0 < p < 1/4,

lim sup mvlp(m) - p,,,I = 0 Px ® P" - a.s. (4.10)

for 0 < v < min{(1 - p)/8, (1 - 4p)/2, (9 - 33p)/32}.

(iv) Under the only assumption that c(m) and R(m) are constant with 0 <
c < 1/2 and 0 < R < 1, the ARE of the global sequential SEM algorithm
is positive.

Proof of Theorem 3. The proof of Theorem 3 parallels that of Theorem
1, except for the proof of (iv). However, since it is delicate, we detail each
of its steps. Step 1 contains the proof of some technical results about the
rates of c(m), R(m) and related quantities (m --+ oo). Step 2 establishes a
result analogous to (3.14). Step 3 constructs the Skorohod representation we
need and state the estimate (4.22), analogous to (3.20). Step 4 obtains an
estimate of the rate of convergence to 0 of Eu(IY(m) - Z(m)12) as m --- 00,

where EU denotes the expectation with respect to the Skorohod represen-
tation probability space, Y(") = y(m)(u) = mI/ 2{p(m)(x, u) - pm(x)} and
{Z ( -) = Z(m)(u)} represents a suitable Gaussian process, such that the r.v.
Z(m) has mean 0 and variance v(m) --+ v" as m -- oo. Step 5 deduces the
assertions (i)-(iii) of Theorem 3 from the preceding steps. Finally, Step 6
establishes the assertion (iv).

We now proceed to explain the successive steps of the proof of Theorem
2.

Step 1 We begin with some technical results concerning the assumptions
(H51 and (H6) in Theorem 3. These results are stated in Lemma 4.1, which
is as follows.

Lemma 4.1 Suppose that the assumption (ff6) in Theorem 2 holds. Then,

(i) For any 0, 0 < 0 < 1,

Z, m-3 2([Om]) < 00, (4.11)

where 0(m) is defined as in (3.35)-(3.36) and [t] denotes the largest
integer < t.
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(ii) A sufficient, but not necessary, condition for (H5) to hold is y < 1/4.

(iii) We have, for any 0, 0 < 0 < 1,
m

m3/2 J R(k) -4 0 as m- oo (4.12)
k=1

and
m

m3/2 1 R(k) -- 0 as m - oo. (4.13)
k=[m]

The proof of Lemma 4.1 can be found in the Appendix.

Step 2 In Step 2, we establish the following Lemma 4.2, which concerns
an estimate of

Y= E1
4(Iy(m) 4) (m -_ oo), (4.14)

where y(m) = M/ 2{p(m)(x, u) - pm (x)} and the notation En refers to ex-
pectation with respect to the probability measure Pn. Notice that the result
that we obtain in Lemma 4.2, namely (4.15), is true for PX - a.e. sample
sequence x and all m large enough, but cannot be integrated with respect to
Px.

Lemma 4.2 Suppose that the assumptions (Hi), (H3) and (H6) hold. As-
sume in addition that m{1 - R(m)} 2 --+ oo as m - oo. Then, there exists

for Px - a.e. x a finite integer m0 = mo(x) such that rn > mo implies

IIY(m) 11,4 {1 - R(m)}-. (4.15)

Proof of Lemma 4.2 We have for all m > 1

IIY(m+')1lfI, 4 5 (M + 1)1/ 2rm-1/ 2R(m + 1)11Y(m)In, 4  (4.16)
+(m + 1)1/2R(m + 1)Am+i + w(m + 1),

where Am+l = IPm+i - PmI and w(m) = (1/4)1 1(m) 110, -- 1/4 Px - a.s. as

m -4 00 (see (2.8), (2.19) and (3.15)). This in turn leads to

IY(m)11n, <_ Im + IIm + IIIm for all m> 1, (4.17)
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where I,_ = ml/ 211m(2)IIY(l)110,4 = o(1) in view of (H6) and Lemma 4.1,

Ijm = m 1/ 2 lan(j) ad
j=2 (4.18)

111, = ,(m/j)/2rlm (j + 1)w(j),
j=2

and rlm(j) = R(j)... R(m) for j = 1,...,m, with the convention that

I(m+1)= 1.
Since R(j) < R(j+1) forj > 1,H,,(j) < Hm(j+1) forj = 1,...,m and,

by Lemma A.4 in the Appendix, there exists a.s. a finite integer ml = mi(x)
such that m > m, implies A,,, < (2J,/Jb)m-1 , splitting urn into A,, +

Bi, with Am = M/ 2Y2F2<.<5(mllm(j)AI and B_ = m/2E[o,,+j<j<,,H,,(j)Aj ,

where 0 < 0 < 1 and [t] denotes the largest integer < t, yields for m > M 2:

[0m]

Ilm !5 m1/2Elm([Om]) + mI/2(2j4/Job.)[Om - 1
j/=2

(1 + R(m) + R 2(m) +...) (4.19)

< m3/211m(Om]) + m-1 /20-1 (2J/Job,){1 - n(m)}-'
= o(1)

in view of (H6) and Lemma 4.1. Splitting III, similarly provides

[Gm]

Illm _ (m/2)'/2l m([Om] + l)[Om][OmI-,w(j)
j=2

+(m/[Om)1/ 2(max[o, <<_m w(j))(1 + R(m) +...)
(4.20)

[8m]
< m3 /2HI([OM] + 1)[Om-I w(j) + 0-1/2{1 - R(m)} -1

j=2

(max[e.]<,j<m w(j)).

Since the Cesaro mean and max[om,,j<m w(j) --4 1/4 as m -+ oo and

m 3/211m([gm] + 1) = o(1), (4.16)-(4.20) together imply

IIy(m')l, 4 _ o(1) + (1/3)0-'/2{1 - R(m)}- 1  (4.21)
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whenever m >_ M2 = m 2(x) M I. Choosing 0 such that (1/3)0 - 1/2 < 1
leads to (4.15) for m > mo(x) M i 2 , as required. 0

Step 3 In Step 3, we examine the construction of the Skorohod representa-
tion of the r.v.'s 4m(p,w) and E(m)(w) for p E [0, 1] and m > 1, as well as the
estimate (4.22), uniform in p E [0, 11, for the mean square distance between
these respective representation r.v's, as m -- oo.
Again, (4.22) is true for Px - a.e. sample sequence x and for m large enough.
It cannot be integrated with respect to Px.

Lemma 4.3 Under the assumptions (H1) and (H3) of Theorem 3, there
exists a probability space (U = {u = (ul,u 2 ,...)};Pu) and r.v.'s ,(p, um)
and f(um), m = 1, 2,..., such that

(i) m(p, urn) and c(um) have the same distributions as ,,(p, w) and (r)(w),
respectively, for each m = 1,2,... and all p in [0, 1].

(ii) For each fixed p, the r.v. 's m(p, um),i = 1,2,..., are mutually inde-
pendent and the r.v. 's f(um), m = 1, 2,..., are i.i.d. and Gaussian with
mean 0 and variance 1.

(iii) For Px - a.e. x, there exists a finite integer m 3 = m3 (x) > mo(x) such
that, for all m > m 3 and p in [0, 11,

EU(14n(p, Ur) _ e(Um) 2 ) < 10f1/4(m)l log{7(m)I1/2 + 271/2(m),
(4.22)

where y(m) = CBE[r'mc(m)]- 1 2 is as in Section 3 (see (3.20)).

The proof of Lemma 4.3 completely parallels that of Lemma 3.5, and is
thus omitted.

Step 4 In Step 4, we show that there exists a Gaussian process {Z(m) -

Z(")(u)}, defined on the Skorohod representation probability space (U, Pu)
introduced in Step 3, such that the versions Y(m) = Y(r)(x, u) of m1/ 2{p ()(x,
w) -p,(x)} defined by making use of the r.v.'s m(p,um) introduced in
Lemma 4.3 are close to Z(m) = Z(m)(u) in the mean square sense, for Px -
a.e. x.
More precisely, let {Z(m)(u)} be the linear autoregressive Gaussian process,
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defined on (U, Pu) by the recursion formula

Z(m+l)(u) = (m + 1)-/ 2 rm+Z(m)(u) + Um+lc(m+')(u) for m > 1, (4.23)

with Z(')(u) = ae()(u). Then,

Z(m)(u) = E(m/j)/2m(j + 1)orje{j}(u) for m > 1, (4.24)
j=1

where r,,(j) = rj... rm for j = 1,...,m and 7rm(m + 1) = 1, is a Gaussian
r.v. with mean 0 and variance

V(m) = ,(m/j)7rn(j + 1)or. (4.25)
j=1

Moreover, define Y(")(x, u) = ml/2{pm)(x, U)-pm(X)}, where p(0 )(x, u) =

p(O) and, for m > 0,

p (r+l}xu) = tP, T+l{p(m)(X,U)} + (m + 1)- 1/2 (4.26)

where (m+) (x, u) = m+j {p(m) (x, u), u,,+ .
In the sequel, we will suppress the notation indicating the dependence on

u or (x,u), unless necessary. We will let IIYIIu,, = E (°(IYI') for all finite
a>1.

Lemma 4.4 below provide- an estimate for Eu(IY( ' ) - Z(m)12) as m --

oo. This estimate is uniform in p E [0, 1] and is true for PX - a.e. x.
Unfortunately, the integration of inequality (4.27) with respect to Px does
not lead to a similar estimate.

Lemma 4.5 below shows that the variance vm) of Z(m) converges to v* as
m --+ o and provides an estimate for Iv(m) - v"I.

Lemma 4.4 is as follows.

Lemma 4.4 Under the assumptions (Hi), (H3) and (H6) and the additional
assumption m{1 - R(m)} 4 --+ oo as m -+ 00, the uniform (in p) Skorohod
representations Y(m) and Z(') satisfy PX - a.s.

IIy(m) - Z'm)lu,2 < a.,,(m) (4.27)

for all m large enough, where, for all 0, 0 < 0 < 1,

aeq(m) = O(/([Om])) + O(m-1/2{1 - R(m)}- 2 ) (M --+ c). (4.28)
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Proof of Lemma 4.4. It follows from Lemmas 3.5 and 3.4 that, for all
m> 1 and Px - a.e. x,

IIY(m+l) - Z(m+ )lIu, 2 
< (m + 1)1/2 m-1/ 2rm+l (4.29)

IIy(m) - Z(m)IIu, 2 + g(m + 1),

where {g(m)} is a sequence of positive numbers decreasing to zero such that,
for all m > 2 and PX - a.e. x.

g(m) < 9(m) + m1/2'Am + Aoml/2A2

+2Ao(m + 1)l/ 2m-/ 2 AmIIY(m-)Ilu, 4
+BoAm + Ao(m + 1)1/2m-a11Y(m)Ilu, 4 + Bom-1/2lY(m)ll,

+Bom-1/
2 11Y( - I IU,41I(m)IIU,4 U

/3(m) + 2Aom-1 /2 {1 - R(m)} - 2 + o(m-/ 2{1 - R(m)}-2),
(4.30)

in view of Lemma A.4 and 4.2.

Now, (4.29) entails that, for all m > 2,

I1Y(m) - Z(m)IIu,2 _ ml/2 r,(2)K, + E(rn/j)l/27rm(j + 1)g(j), (4.31)
j=2

where K, 1 1jY() - Z(1)IIu, 2 < co Px - a.s.
Since, for all r such that r* < r < 1, there exists PX - a.s. a finite integer

M4 = m 4(x) > m 3 such that 0 < r,. < r for all m > M 4, the same splitting
technique as in the proof of Lemma 4.2 yields, for all [Om] >_ M4,

(Gm]

IlYC")- Z(m)IIu,2 < ml/ 2MAXrl-m4K, + -(m/2)l/2 (4.32)
j=2

MAXrm-[°"lg(j) + (m/[Om])1/ 2g([Om])(1 + r + r2 +...),

where MAX=niax(, r 2 ... r., 4 ). Thus, PX - a.s.,

[am]

IIY(m) - Z(m)IIu,2 = O(ml/2rm) + O(m 3/2r(-O)m[Om]-'1g(j))
j=1

+O(g([Om])) (M -+ 00)

= o(1) + O(g([Om])) (m -* oo),
(4.33)
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which gives (4.27)-(4.28), in view of (4.30), as required. 0

We now turn to Lemma 4.5.

Lemma 4.5 For PX - a.e. x, we have

Iv(m) - = O(m-1/21(m)) (m --+ 0o) (4.34)

where e(m) = {212(m)}1/ 2 and 12 (M) is the iterated logarithm.

Proof of Lemma 4.5. We again use the same splitting technique as above,
but with f(m) = - s(m), s(m) --+ co and s(m) = o(m) as m - co, instead
of f(m) = [0m]. We have

f(-)-I
Iv(m) - v'f < m E (rf(.) ... r.) 2o_ + I -( 'Y

j=l
+ (a.) 2 1m(m_ 1)-r + ... + I2r(,) (u*) 21 (4.35)

r.) 2 + (a-)211 + (m - 1)-r +

+ s(m){m - s(m)}-(rf(,)+l ... r.) 2 - {1 - (r*) 2 -1I.

But, for j > m 4 (x),rj < r < 1, whereas, by Lemma A.1, Ior - (a*)2 -

O(j -1/2(J))(J --oo) Px - a.s. Thus, for m large enough,

f(m)-i
Iv(-) - v*I  mr2s(m){f(m) - 1}-1 E Oa + O(f(m)-/ 2 {f(m)})

j~l

+(a*)2[(m - 1)' Ir2 - (r*)21 + ... + s(m){m- ) -

I(rf(m)+i ... rm)2 _ (r )2 (m)I1

+(a*)211 + (m - 1)-(r*)2 + ... + s(m){m - S(M)}- 1

(r)
2
s
(
m
)
- {1 - (r*)2}

-
I
.

(4.36)
Now, the first term in the RHS of (4.36) is O(mr2

9(m) (m --- co) ; the
second term is O(m- 1/ 2

t(m)) (m --+ oo) because of properties of s(m) as
m -+ oo ; the third term is O(m-1 1 2e(m)) (m --_ 0o) : In view of Lemma
A.1, lr - (r*)2 1 = O(j-1 / 2 (j)) (j -- oo) PX - a.s., thus I(rmj ... rm) 2 

-

(r*)2j I  jr 2JO(m-/2t(m)) (m __ 0o) if 1 j < s(m), with jr2) =
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jexp{-21 log r~j} sups>0 xexp{-2[ log rix }= (2el log r[)-' and (m-1)-'+
... + s(m){m - s(m)}' _ s 2 (m)m - s(m)}-' - m-s 2 (m.) = o(1) (m --*
oo) ; the fourth term is bounded by o(1) + O((r*)2 ,()) ; finally, choosing
Alogm < s(m) = o(m) (m -+ co) with A > (21 log r) - 1 above completes the
proof. 0]

Step 5 We are now in a position to deduce the assertions (i)-(iii) of Theorem
2 from Lemmas 4.1-4.5.

Proof of (i): Since, by Lemma 4.5, Z(') converges in Pu - distribution as
m --- 00 to a Gaussian r.v. with mean 0 and variance v*, Lemma 4.4 implies
that Y(m) converges in Pu - distribution as m -- oo to a Gaussian r.v. with
mean 0 and variance v*, for Px - a.e. x. Thus, the same is true for Y(m)(x,w)
in PO distribution. Hence (i).

Proof of (ii): From Lemma 4.4 and the Cauchy-Schwarz inequality, for Px -
a.e. x and all m large enough,

IEu(p(m) - PM - m-1 / 2Z("))l = IEu(P()) - PmI

< --(1 ) z) - I (4.37)

< m-1/ 2aseq(").

Hence,
IEO(P(m)) _ PmI m-/ 2aq(m) o(m-1 2 ) (m - 00). (4.38)

We now turn to the variance of p(m) with respect to Pfl, Varn(p(M)).
We have for Px - a.e. x and all m large enough,

1iIP(m) - P-IIU,2 - m-1211Z(m)IIU, 2 < m-1 /2 lY(-) - Z(-)IIU, 2. (4.39)

Thus, iJp(m) - P-4,2 - m-1/2(v(m))1/2 < m-1/ 2 aseq(m) •  (4.40)

Finally, from Lemmas 4.4 and 4.5 and (4.37)-(4.40) it follows that

Var0 2(P ( ')) - IIp(- ) - Pm1if0,21 < IEn (p(' )) - PmI l,2- (4.41)
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Thus,
Var'2(p(  - m-1/12(v(m))1/2j < 2m-1/2ae(m) (4.42)

and
Varl 2 (p(m)) - m-1/(v*)1/21 < 2m-/ q(m) + O(m-(m)). (4.43)

This completes the proof of (ii).

Proof of (iii): Let Pm(t) and im(I), -oo < i < oo, denote the d.f. of the
r.v.'s p(-)(u) - pm and m-1/ 2Z(m)(u), respectively, i.e., for Px - a.e. x and
M >

P(M(t) = -  _< t}{ (t) = Pu{ml-/ 2Z(m) _ t}. (4.44)

Lemma 4.4 implies that, for PX - a.e. x, all h > 0 and all m large enough,

sup IPm(t) - 41,,(t)l < h- 2a2q(m) + hm - 1/ 2  sup
-0o<t<oo t-hm-1 2 <s<t+hm-

1 l2

(4.45)
where 0r,(S) = (d/ds),m(s) is the normal density function with mean 0 and
variance m-lv( ). Let r = T(m) > 0 be given. Then, letting h = rm 1 / 2 in
(4.45), we obtain that for Px - a.e. x, all m large enough and all t > r,

IPT(t) - 1(t)I < r 22 maeq(m)

+ TM 1/ 2 (21rv(-))-1 2 exp{_(1/2)m(v())_l( t - r) 2}
(4.46)

and, for all t < -- r,

IPm(t) - 4D(t)l < T-2 m-aseq(m) + Tml/ 2 (2lrv(m)) -1 /2

expi(1/2)m(v(-n))_t(t + r)2 )}. (4.47)

Since Pu{lp(' ) - Pm1 > t} = (1 - P.)(1) + Pm(-t) for all t > 0, picking

a sequence {r(m)} of positive numbers such that
00

E -2()m-aseq(m) < 00 (4.48)
=1

and a sequence {t(m)} such that t(m) > r(m) for all in,

0o

Z (1 - 4m){t(m)} < 00 (4.49)
m= 1
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and

00

E r(m)m1'2 exp[-(/2)m(v()) - ' {t(m) - T(rn)} ] < 00 (4.50)
M=1

yields, in view of (4.46)-(4.47),

Pu{lim sup t-'(m)p(m) - pml I = Px - a.s. (4.51)
fl-.00

It is possible to choose

t(m) = cst.m -" (4.52)

for any positive constant cst. and

0 < v < min{(l - p)/8,(l - 4p)/ 2 ,( 9 - 33p)/32}. (4.53)

For (116) with p = 0 (i.e., c(m) = constant), it is possible to choose

t(m) = cst.m -1/ a  (4.54)

for any positive constant cst. This concludes the proof of (iii).

Step 6 In this last step, we consider the ARE of the global sequential SEM
algorithm and prove assertion (iv) of Theorem 3. This is the subject of the
following lemma.

Lemma 4.6 Under the assumption that c(m) = c = constant and R(m) =

R = constant, with 0 < c < 1/2 and 0 < R < 1, the ARE of the global
sequential SEM algorithm is positive.

Proof of Lemma 4.6 It suffices to show that

E(Ip tm) - pm12) = O(m-') (m -_ 00), (4.55)

where the expectation symbol E stands for Ex,,n. To this end, we introduce

the sigma-fields Fm generated by xl,...,xm and w .. w (m > 1).
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We have
E(Ip("+l) - pm+i1I2I.m) = E{It+i(p(m))- pm+iI'2IFm}

+(m +1i-E{S+(ptm)).-"} a.s.

< R2E(Ip(- _ p.+112 1r)
+(1/2)(m + 1)-' a.s.

< R 2lp(") _ pm12 + E(Ip+i - pm 2  )
+2E(lp(") - Pm l IP"+1 - pmIIT".)
+(1/2)(m + 1)-1 a.s.

:< R2 'p(-) - pmI 2 + E(Ipm+, - p. 121 T.)

+21p(m) - p" E1 /2(Ipm+, - p. 12 I.Fm)
+(1/2)(m + 1)-' a.s.

(4.56)
If we take the expectation of both members of (4.56), we obtain, by

making use of the Cauchy-Schwarz inequality,

I p(m+1) - P 1+1I2 < R2 11p(m) _ pmII2 + IIpm+1 - pm (45

+2 1ip m - P.112IIPm+1 - Pm ((2 + (I/2)(m + I)-].

Now, since pm is the ML estimate of p* based on {x,... ,xm}, we have
lip. - p*12  E(Ipm - p*1) 2  -' (mJob) - as m -+ 00. Thus, for any vo > 0,

there exists a finite integer M(vo) such that m > M(vo) implies

Ilp m
" + +)  _ p "+ < R2 IIp(m) - pm + 4 + 4 ,)1-/ 2 (mJ )-l/ 2 1p(m) - PmII2

+2(1 + v'o)(mJo6,) - l + (1/2)m -1 .
(4.58)

If we define A(vo)= A = 2(1 + , B(vo)= B = 2(1 + v)Jobl +
(1/2) and ym = IIp(m) - Pm 112, then (4.58) becomes

2 2 21/1

Yrn+i < R y, + 2Am 1 /2 ym + Bm -  (4.59)

for all m > M(vo). We now prove by induction that there exists an integer
M1 > M(vo) and a positive constant K such that m > Al1 implies ym <

Km - 11 2. To this end, assume that ym <Km-1 12 for some positive K and m
large enough. Then, in view of (4.59),

2 2 2

Ym+i < (R K + 2AK + B)m - '. (4.60)
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The RHS of (4.60) is lesser than K2 (m + 1)-i if m is large enough and

(1 - R2)K 2 - 2AK - B > 0. (4.61)

But (4.61) holds whenever K > (1 - R 2 )- 1 [A + {A 2 + B(1 - R2 )}1/21. o

This concludes the proof of Theorem 3. LI

Remark 4.1 Theorem 3 (ii) implies under the additionai assumption (H5)
that for Px - a.e. x

M IEn(p(j)) - pI < m- 1  En (p(j)) - pj2 1/
j=1 "==

m/2 laeq(J)}

= O(m - 1/12 ) (m__0),
(4.62)

and, similarly,

_Varl2 (p(j)) - i-1/2(v*)1/21 = O(m - 112 ) (m - co). (4.63)
j=1

Remark 4.2 The assertion (4.55) in the proof of Lemma 4.6 entails that
p(m) is asymptotically unbiased, since

IExxn(p(m)) - Ex~n(pm)I < E11/2 -p m12) _4.62)

= O(m -1 2 ) (m - (4.64)

and Exx,(pm) = Ex(pm) = p*.

Remark 4.3 The estimates in Theorem 3 are nonoptimal, since they es-
sentially rely on an L2(PU) estimate, namely (4.27). It can be conjectured
that

lim sup m Varxxf(p(m)) > V* + J0 16 . (4.65)
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We now try to support this conjecture. First of all, we know from (4.38)
and (4.43) that En(p(m) - pm 2 ) = m-v* + o(m - ') (m -- co) PX - a.s.
Thus, limsupm mEx×O(Jp(m) - pml2) > v*. Next, the ML estimation theory
implies that limsupm EX(Ipm -p*[ 2 ) = Jo-. Finally, the sample fluctuations
of m1/2(pm-p *) and ml/ 2{En (p(m))-pm } can be guessed to be asymptotically
uncorrelated : indeed,

lExfl{m-1/ 2(pm - p*)D(m)}l < Ex(m'/ 2 ,,! - PzI lD( )I 110,2)< E/ 2(mlp - p'l2) IIO(")IxXO, 2

= O(1ID(m)llXX,2) (rn -- oc.
(4.66)

where D(-) = Y(-) - Z(m).
Now it can be expected that 1JY(m) - Z(m)IIX~f.,2 - 0 as m -* c.

But, since Z(m) has Po - mean 0,Exfl{m/ 2(pm - p*)(y(m) _ Z(m))} =

Exx {m"/ 2(pm - p*)y(m)}, with y(m) = ml/ 2 (pm) - Pm). From a heuristic
point of view, (4.65) tells us that the variance of p(m)(x,w) can be split
into the variance of p, and the variance of the fluctuations related to the
simulation S-step, the latter being of a magnitude > v *M - 1 as m --. 0.

Recalling that v* = J {1 + (JC/JCod)}-' < (2Jb,)-', the conjecture (4.65)
would imply, if it were true, that the ARE of the global sequential SEM

algorithm is < [1 + {1 + (JIJcond)}-L]- 1 . If, furthermore, the inequality
in (4.65) could be replaced by equality, then the ARE would be > 2/3 and
would converge to 1 as Job,/J converges to 1, i.e. as the mixture becomes

more and more separable.

Remark 4.4 As for the one-step sequential SEM algorithm, the global se-
quential SEM algorithm can be considered as a sequential Bayesian algorithm.

Here, the underlying Bayesian algorithm is Tanner and W'ong's (1987) one.

Remark 4.5 As for Theorem 1, extension of Theorem 3 (i) to the case where
the mixture has K > 3 components is straightforward.

Remark 4.6 As for Theorem 1, extension of Theorem 3 (i) to a general
mixture setup has been proved in Celeux and Diebolt (1986b) under the strin-
gent assumption that TN(p) has only one fixed point in the compact GN cor-

responding to JN. This result suggests that a similar result holds in very
general incomplete data settings.
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APPENDIX

Proof of Lemma 2.1

Proof of (i): From (2.3) and (2.4),

N

T'(p) = N -1 Zf(xi)f 2(xj)h- 2(x,,P) > 0 for all p in (0,1), (A.1)
i=1

where h(x,p) = pf1 (x) + (1 - p)f 2(x) (see (2.1)).

Proof of (ii): From (2.3) and (2.5),

N

LN(p) = E{fl(xi)- f2(xi)}h-1 (xi,p)
i=1

N
= E [P-1tOxi,P) -(1 -p)- I I- t(xi,,p)}]

(A.2)
N

= p-(1- p)- [(1 - p)t(xi,p) - p{1 - t(xi,p)}]
i=1

N

- p-1 (1 - p)-,t(xip) - p),
i=1

hence (2.6).

Proof of (iii): From (A2),

N

L ~E(p) =--{f(xs) - f 2(xi)} 2 h -(xi,p) 0 for all pin [0,1]. (A.3)

Now, either f1 (xi) = f 2(xi) for i = 1,..., N or these exists i, 1 < < N,

such that f1 (xi) # f 2 (xi). In the first case, we have L" (p) 0, LN(p) is
constant and TN(p) = p on [0, 11. In the second case, L" (p) < 0 for all p in

[0, 1] ; thus, LN(p) is concave on [0, 11 and has a unique maximizer on [0, 1].
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Furthermore, for all x in X and p in (0, 1),

{fi(x) - f 2 (x)} 2h- 2 (x,p) < 2p- t2 (X,p)+ 2(1 - p)2 {1 -t(X,,p)}
2

S2{p- 2 + (1- p) - 2 } (since 0< t(x,p) < 1).
(A.4)

Thus, the SLLN implies that for Px - a.e. x in X and all p in (0, 1)

N-1 L" (p) -- L"(p) = -f{f,(x) - f 2(x)} 2h- 2(x,p)h(x,p*) (dx) (A.5)
as N -+ oo.

By the assumptions of Theorem 1, L"(p) < 0. Hence (iii).

Proof of (iv): From (2.6),

T,(p)-1 = (1-2p)N-'L'(p)+p(1-p)N-'L"(p) for all p in (0,1). (A.6)

Thus, for p = PN, where L'N(pN) = 0 and L'N(pN) < 0, we have

T,(pN) = 1 + pN(1 -pN)N- 1 L",(p) < 1. (A.7)

As TN(pN) > 0 and TN(PN) = PN again by (2.6), (2.7) is proved.
Furthermore, since L'N(p) < 0 for all 0 < p < PN and L'N(p) > 0 for all

PN < p < 1, the remainder of (iv) obtains again from (2.6). (Compare the
proof in Silverman (1980).)

Proof of (v) : Assertion (v) is a direct consequence of (iv) and its proof
will be omitted here.

Proof of (vi) : Remark that the empirical complete-data information value

JN,c = pN'(1 - PN) - 1 and the empirical observed-data information value
JN,ob3 = -N-'L"(pNv) (e.g., Titterington et al (1985)). Thus, from (A.7),

rN = T 1 (pN) = 1 - JvJN,.ob,. (A.8)

Since JjlJN,obs --+ Jc- Jobs as N -- 00 for PX - a.e. x and Jc = Jobs + Jcond,

(vi) obtains.
It is worth noting that (A.8) also results from a general relation in Demp-

ster et al. (1977) and that the information ratio J 1 Job, measures "the pro-
portion of information about p without knowing the subpopulation member-
ship ... (and) might be interpreted as the ability of the data to distinguish
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the component densities" (Windham and Cutler (1991)). Indeed, it is well-
known (e.g., Louis (1982) and Sundberg (1976)) that the convergence rate of
the EM algorithm is the largest eingenvalue of the matrix I- Jc-'Job,, which
is coherent with (vi) above. 0

Lemma A.1 (i) For Px - a.e. x, all N and all p in (0, 1),

0 < T :_ (1/ 2 )p-1 (1 -p)-1 (A.9)

and

IT (p)I < p-2 (1 - p)-2  (A.10)

Proof of Lemma A.1. Inequality (A.9) results from (A.1) and the elemen-
tary inequality

2p(1- _p)fl (X)f2(X) <5 {pfj(X) + (I1-p)f2 (X)}2.  (A. 11)

Similarly,
T(p) = -2N-1El<i<Nf1(xi)f 2(xi){fl(xi) - f 2(xj)}h-3 (xj,p)
and
2p(l - p)fi(x)f 2 (x)h- 2(x,p) < 1,

whereas
Ifi(x) - f 2(x)Ih-(x,p) < f 1 (x)h-(x,p) + f 2(x)h-'(x,p) = p-'t(x,p) + (1 -
W)-f 1- t(x,p)} __p1 + (1 - p) = p-1 (1 - p). 0

Lemma A.2 For Px - a.e. x,

r' = inf Ty(p) -- r'= inf T'(p) > 0 as m-- c (A.12)pE(O,1) pE(O,1)

where T'(p) = f fi(x)f 2 (x)h- 2(x,p)h(x,p*)p(dx) = limN-c Tk(p),0 < p <
1.
Proof of Lemma A.2. It is an easy convexity fact that r' = Tv(Pi.f,N)

and r' = T'(PivI), where Pinf,N and Pinj denote the inflexion points of T(p)
and T'(p), respectively, i.e. Tr(Pi,,f,N) = T"(Pif,) = 0. Furthermore, it can
be shown that r' and r' are in (0, 1). Let b,0 < b < 1/2, be so small that
T'(b) and T'(1 -b) are > 1. Since TK(p) and T"(p), 0 < p < 1, are increasing
functions, Dini lemma implies that IT - T"lIi = supp.r ITK(p) - T"(p) --+ 0
as N -- oo, where I = [b, 1-b]. Also, Tk(b) and TN(1-b) are > 1 for all N
large enough, and Pinf,N and Pint are in I.
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Finally, ITK(PTII,N) - T"(pin.fN)I = IT"(Pi,.fN)I <_ IIT - T"111 0 as
m -+ 00. Thus, T"(Pinf,N) -+ 0 ds N - oo, which implies that Pinf,N Pin!
as N -+ oo and r = T (PifN) -- r' T'(p,,j) as N -- oo.

Lemma A.3 For PX - a.e. x and all N large enough,

JS (p)l < (1/2)p-'(1 -p) -1 + cst.p-3/2(1 p)-3/ 2,0 < p< 1, (A.13)

where cst. denotes some positive constant.

Proof of Lemma A.3 Since

S = p-1/ 2(1 - p)-/ 2 (1 - 2p){T (p)}1/ 2 + (1/2)pl/ 2(1 - P)/2 (A.14)
{ T (p) }- 1I2T1 (p),(A14

we have for all p in (0, 1) that

IS (p)j < (1/2)p-1(1 - p)- 1 + (1/2)rN.-1/ 2p- 3/2(1 _ p)-3/ 2, (A.15)

in view of (A.9) and (A.10). 0

Lemma A.4 (i) We have

IrN - r*l = O(e(N)N-'/ 2) (N - oo). (A.16)

(ii) We have
laN - o*l = O(f(N)N - 1/ 2 ) (N oo). (A.17)

Proof of Lemma A.4 Proof of (i): From the general theory of ML esti-
mation, IPN - PI O((N)N- 1/ 2) (N -- o) Px - a.s. Thus, for N large
enough, we have in view of Lemma A.1 that

IrN - r*l < ITT(PN)- Tk(p*)l + IT (p*) T(p*)I (A.18)
< O(I(N)N-1 2 ) + IT(p*) - T'(p*)l.

But T,(p*) - T'(p*) has the form N-EI<i<NUi, where the r.v.'s U are
i.i.d., bounded and have mean 0. Thus, by the LIL, iT,(p*) - T'(p)l =
O(I(N)N-' 1 2) (N -4 oo).

The proof of (ii) proceeds similarly. 0

Proof of Lemma 2.2 By the duality principle of Diebolt and Robert (1992),
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it is enough to prove that the sequence f{z(m)) is ergodic. Since it is a finite-
state homogeneous Markov chain, it is enough to prove that all the transition
probabilities are positive. Now, define

( N
AN = jZE Z: N 1 EziEJp (A. 19)

1i=1 )

where Z = {0, 1}N has 2 N elements. If a and b are any elements of AN,

Pnfz(m+l)blz(-) = a} =
pnf{z(-+') = bIZ(-+(1 /2)) E AN, Z(m) = al p~{Z(-+(l/ 2 )) E ANIz(m) = a}
±Pn fz(-+') = blIZ(m+(1/ 2 )) AN, Z(-) = a} Pn {Z(m+(1/2 )) ANrZ(-) =-l

(A.20)

wihplC-(/) AATI(') = a) > 0 (A.21)

and
Pa{z (-+( 1 /2)) ANIZ~m = a) > 0, (A.22)

since all the states z E Z can be reached from z(mn) with positive probabil-
ity (because t(x, p) is in (0, 1) for all p in (0, 1)). Moreover, Pn fz(-+') =

.IZ(m+(1/ 2)) f AN} is a given probability distribution related to GN, whereas

Pn{z(m+l) = blIZ(m+(1/ 2 )) E AN, Z(m) = a} = pof{Z(-+(1/ 2 )) = blz(m) -= a)
N N N 1b

= fli(x,, NlEaj)bi {1 - t(x2 , N-1 aj)} > 0.
i=1 j=1 = I

(A.23)
This completes the proof of Lemma 2.2. 0

Proof of Lemma 3.1 The proof is very similar to that of Lemma 2.2,
and is thus omitted. 0

Proof of Lemma 3.3 We prove (3.18). By the quadratic Taylor formula,
we have if IhI 5 2fE0 and N is large enough that

ITN(PN + hz) - TN(PN) - hrN 1 : (1/2)h' sup JTA (PN + Oh)I (.4

< aoh,
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for some constant ao, in view of (3.17). If Ihi > 2e 0, then, since

JTN(PN + h) - TN(PN) - hrNI < 3, (A.25)

it is enough to choose A 0 > ao such that Ao(2fo) 2 > 3. El

Proof of Lemma 3.4 It is similar to that of Lemma 3.3 except that we

make use of a linear Taylor expansion rather than a quadratic one. 1l

Lemma A.5 We have

pm+1 -p mI _ m-JcJ~(l + 0(1)) (m --- oo). (A.26)

Proof of Lemma A5 By definition, L'(p) = L' +1 (pm+i) = 0. By a linear

Taylor expansion of L'(p),

LM(p,)(pm+, - pm) + O(Ipn+i - p. 12 ) = -(O/Op) log h(x,+I,p)lp=p.+,
= -(f -f 2 )(xm+)h-'(xm+i,pm+i).

(A.27)

Since

m-iL"(p,) - -Job, a.s.

and
Ifi- f 2 I(x)h-1 (x, p) < p-'(1-p)- = J:(p) for all x and p in (0, 1), the proof

is complete. 0

Proof of Lemma 4.1 Assertion (i) is straightfoward since under (116)

'8(m) = O(m - b) for some positive b. Assertion (ii) results from the following

inequality:
e(m) = 1 - R(m) cst.c(m) (m --+ oo). (A.28)

We now turn to (iii). Since 1 - R(m) = e(m) > cst.nr-" for some positive

cst.,

log { R(k) +(3/2)logm = Elog(1-e(k))+(3/2)logm
l.k=i k--1

m

-, -- e(k) + (3/2)logm
k=1

< -cst.(1 - p)-'m'- + (3/2)logm

- -oo as m--+ oo.
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The proof of (4.13) is similar. 0
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